
Kenneth R. Laker, University of Pennsylvania, updated 6Apr15 

 

1

ESE 570 Chip Input and Output (I/O) 
Circuits 



Kenneth R. Laker, University of Pennsylvania, updated 6Apr15 

 

2

OVERVIEW
 1. INPUT PADS – ESD PROTECTION

2. TTL-TO-CMOS LOGIC LEVEL SHIFTING

 3. DIFFERENTIAL SIGNALING

4. OUTPUT PADS – L di/dt NOISE

5. BIDIRECTIONAL I/O PADS

 6. ON-CHIP CLOCK GENERATION AND DISTRIBUTION

 7. LATCH-UP PROTECTION IN OUTPUT PADS
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ESD PROTECTION
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Simulates ESD phenomena of packaged ICs 
during manufacturing and assembly.
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Electrostatic charge 
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grounding and then 
discharges
when a low-
resistance path 
becomes available.
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After exposure to the ESD waveform, a 
failed IC exhibits latch-up or fails one or 
more data sheet specifications.

ATE HBM ESD and MM ESD TEST 
SETUP
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TYPICAL ESD PROTECTED INPUT PAD
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INPUT PAD WITH SERIES 
TRANSMISSION GATE
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INVERTING INPUT PAD WITH TTL-TO-CMOS 
LEVEL SHIFT
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8xVARIATIONS IN LEVEL-SHIFT VTC DUE 
TO PROCESS VARIATIONS
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WORST CASE SIMULATION METHOD
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Transmitter
ReceiverTwo-wire pair

Terminator

Differential Signaling System

I = +i 

I = -i 
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DIFFERENTIAL SIGNALING (LOGIC 
LEVELS) FOR GBPS SYSTEMS
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OUTPUT PADS

CK or 
ST
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CK = 0 => MN2 & MP2 OFF => Z = HIGH Z
CK = 1 => MN2 & MP2 ON => Z = D

CK   D      P       N      Z
1       1       0       0       1 = D
1       0       1       1       0 = D
0       x       1       0      HIGH Z
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OUTPUT PADS – L di/dt NOISE
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OUTPUT PADS – L di/dt NOISE

REDUCE NOISE => lower V
DD

 or increase t
s
 -> limits speed
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OUTPUT PADS – REDUCE L di/dt NOISE



Kenneth R. Laker, University of Pennsylvania, updated 6Apr15 

 

16

DIFFERENTIAL DRIVER OUTPUT PAD
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BIDIRECTIONAL I/O PAD WITH TTL 
INPUT CAPABILITY

E = 1 => Z = D
E = 0 => X = high Z
E = 0 => DI = Z

XE = 1
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Clock System Architecture

● Chip receives external clock through I/O pad or an internal clock is included in
  the Clock Generator.

● Clock generator adjusts the global clock to the external clock.

● Global clock is distributed across the chip.

● Local drivers and “clock gaters” drive the physical clocks to clocked elements.

Global 
Clock
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ON-CHIP CLOCK GENERATION AND 
DISTRIBUTION
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TWO-PHASE CLOCK GENERATION
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Clock Skew and Jitter

•  Clock should theoretically arrive simultaneously to all sequential
   circuits.

•   Practically it arrives in different times. The differences are called clock 
skews.

•   Most systems distribute a global clock and then use local “clock gaters”
     located near clocked elements.

•  Skews result from paths mismatches, process variations and ambient 
     conditions, resulting in physical clocks ≠ global clock.



Kenneth R. Laker, University of Pennsylvania, updated 6Apr15 

 

22

Clock Skew Components
Systematic is the portion of clock skew existing under nominal 

conditions. It can be minimized by appropriate design.

Random is variable portion of clock skew caused by random process 
variations like devices’ channel length, oxide thickness, threshold 
voltage, wire thickness, width and space. It can be measured on 
silicon and adjusted by DLL components.

Drift is time-dependent portion of clock skew caused by time-
dependent environmental variations, occurring relatively slowly. 
Compensation of those must takes place periodically.

Jitter is rapid clock edge changes (deterministic and random 
components), occurring by power noise and clock generator jitter. 
It cannot be compensated.

Ideal Edge 
Location

Unit Interval

Edge Location 
Shifted

Reference
Edge
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Some Representative Clock Distribution 
Networks
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H-TREE CLOCK DISTRIBUTION NET 
FOR UNIFORM CLOCK DISTRIBUTION

CAD Techniques automate the generation of hierarchical clock distribution 
networks. 
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LATCH-UP IN CMOS CIRCUITS
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LATCH-UP PREVENTION
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OUTPUT BUFFER CELL LAYOUT WITH 
LATCH-UP PREVENTION
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