
1

CMOS
Digital Integrated 

Circuits
Analysis and Design

Chapter 9 
Dynamic Logic Circuits



2

Introduction
• Static logic circuit

– Output corresponding to the input voltage after a 
certain time delay

– Preserving its output level as long as the power 
supply is provided

– Large area, time delay
• Dynamic logic circuit

– The operation of all dynamic logic gates depends on 
temporary (transient) storage of charge in 
parasitic node capacitances

– Need periodic clock signals ⇒charge refreshing
– Smaller silicon area
– Consume less power
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Example 9.1
• CK=1, MP on

– Cx charging, or                                                   
discharging ⇒ Q=D

• CK=0 MP off
– Cx isolated from D
– Q=Vx (depend on the charge store in Cx)

• 2nd inverter remove
– Transistor counts ↓
– Q=-D

• Assuming VOL=0V, VIL=2.1V, VIH=2.9V, VOH=5.0V, 
VTn=0.8V
– CK=1, MP on

• Vin=VOH=5V, Vx=5-0.8=4.2V, higher than VIH so VQ=VDD
– CK=0, M off

• Vx=4.2V, if charge leakage ⇒ Vx<2.9V, can’t be interpreted as a 
logic “1”
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Basic principles of pass transistor circuits 

• The fundamental building block of nMOS 
dynamic logic circuits
– An nMOS pass transistor driving the gate of 

another nMOS transistor
• MP

– Driving by the periodic clock signal
– Acts as access switch
– If CK=1

• Logic “1” transfer
• Logic “0” transfer

– If CK=0
• Cease to conduct and the charge store In the parasitic 

capacitance
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Logic “1’ transfer
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The node Vx has an upper limit of Vmax=(VDD-VT,n)
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Logic “1’ transfer
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Logic “0” transfer
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τ

The pass transistor operates in the linear region 
throughout this cycle, since VDS<VGS-VT,n
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Charge storage and charge leakage

Ileakage=Isubthreshold(MP) +Ireverse(MP)
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Equivalent circuit used for analyzing the 
charge leakage process
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Cin: these constant capacitance components
Cx: due to reverse biased drain-substrate junction 
Cx,min: the minimum combined soft-node capacitance
Cdb.mim: the minimum junction capacitance, obtained under the bias condition Vx=Vmax
thold: worst-case holding time—the shortest  time required for the soft-node voltage to    

drop from the initial logic high value to the logic threshold voltage due to leakage
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Example 2
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Example 2 (cont.)
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Voltage bootstrapping

• To overcome threshold voltage drops in digital circuits
• Figure 9.11

– Considering Vx ≤ VDD ⇒ M2 in saturation , Vout(max)=Vx-VT2(Vout)
– To obtain a full logic-high level VDD, the voltage Vx must be increased

• Figure 9.12
– A third transistor has been added to the circuit
– Cs: dynamic couple to the ground
– Cboot: dynamic couple to Vx
– This circuit produce a high Vx during switching 

• Vx≥VDD+VT2(Vout)
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Voltage bootstrapping
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*Cs: the sum of the parasitic source-to-substrate cap. ofM3 and the 
gate-to substrate cap of M2

*To obtain a sufficiently large bootstrap cap. Cboot in comparison to 
Cs, an extra “dummy” transistor is added

*The dummy transistor acts as an MOS capacitor between Vx and 
Vout
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Example 9.3
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Synchronous dynamic circuit techniques

• Previous section
– Basic concepts associated with temporary 

storage of logic levels in capacitive circuit 
nodes

• This section
– Pay attention to digital circuit design
– Different examples of synchronous dynamic 

circuit 
• Depletion-load nMOS
• Enhancement-load nMOS
• CMOS building block



16

Dynamic pass transistor circuits
• Cascaded 

combinational logic 
stage

• Interconnected 
through nMOS 
transistor

• All input of each 
combinational logic 
block are driven by 
a single clock 
signal

• Two phase clocking



17

Depletion-load nMOS dynamic shift register circuit

• Φ1 active
– Vin is transferred to Cin1 ⇒ Vout1 is determined

• Φ2 active
– Vout1 is transferred to Cin2 ⇒ Vout2 is determined
– Cin1 retain its previous level via charge storage

• Φ1 active again
– The original data bit written into the register (3rd)
– !st stage accept new data
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Depletion-load nMOS dynamic shift register circuit

• Maximum clock frequency
– Being determined by 

• the signal propagation delay through one inverter stage
– One half–period of the clock signal must be long enough 

to allow
• Cin to charge up or down 
• and the logic level to propagate to the output by charging 

Cout
• Logic-high input level of each inverter stage is one 

threshold voltage lower  than the power supply 
level



19

A two-stage synchronous complex logic circuit

• The same operation principle extended to 
synchronous complex logic

• In order to guarantee correct logic levels are 
propagated during each active clock cycle
– The half period  length of the clock signal must be longer 

than the largest signal-stage signal propagation delay found 
in the cirucit
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Enhancement-load dynamic shift register (ratioed
logic)(1)

• One important difference
– Applying the clock signal to the gate of the load transistor

• Power dissipation and the silicon area can be reduced 
significantly

• The input pass transistor and load transistor are 
driven by opposite clock phase
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Enhancement-load dynamic shift register (ratioed
logic)(2)

• Φ1 active
– Vin ⇒ Cin1, nMOS load off

• Φ2 active
– nMOS load on, the output of 1st inverter attains its valid logic (Cin1 preserved)
– Pass transistor of 2nd stage on

• Cout1 ⇒ Cin2
• Φ1 active

– Cout2 is determined and transferred into Cin3
– Also, a new input level can be accepted into Cin1

• VOL of each stage is strictly determined by the driver to load ratio (ratioed-
dynamic logic)
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General circuit structure of ratioed
synchronous dynamic logic

• Extended to arbitrary complex logic
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Enhancement-load dynamic shift register (ratioless
logic)(1)

• In each stage, the input pass transistor and the load transistor
are driven by the same clock phase

• Φ1 active
– Vin transfer to Cin ⇒ 1st inverter is active ⇒ Vout1 attains its valid 

logic level
• Φ2 active

– 2nd pass transistor on ⇒ the logic level is transferred onto the 
next stage
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Enhancement-load dynamic shift register (ratioless
logic)(2)

• Considering two cases
– Case 1

• If Cout1 high at the end of the active Φ1 phase
– By mean of Cin1 low input ⇒ nMOS driver off ⇒Vout1=VDD-VTn

• Φ2 active
– The voltage level is transfer to Cin2 via charge sharing over the 

pass transistor
– Cout/Cin ↑ to correctly transfer a logic-high level
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Enhancement-load dynamic shift register (ratioless
logic)(3)

• Considering two cases
– Case 2

• If Vout1 is logic-low at the end of the active Φ1 phase
– Cin1 high, nMOS driver on⇒ Vout1=0V

• As Φ2 active
– Transfer by pass transistor

• Ratioless dynamic logic
– VOL=0, independent of driver-to-load ratio
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General circuit structure of ratioless synchronous 
dynamic logic
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Dynamic CMOS transmission gate logic

• Totally, require four clock signals
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CMOS transmission gate dynamic shift register

• Low on-resistance of transmission gate (ref.p310)
– Smaller transfer time (RC↓)

• No threshold voltage drop
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Single-phase CMOS transmission gate 
dynamic shift register

• Ideally, CK=1
– Odd on, even off⇒ isolated

• In practical, do not truly nonoverlapping
– CLK have finite tr and tf
– So, prefer Φ1, Φ2
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Dynamic CMOS logic gate implementing a complex 
Boolean function(1)

• Significantly reduce the number of transistors used to 
implement any logic function

• Operation
– First precharging the output node capacitance
– Evaluating the output level according  to the applied inputs
– Both of theses of operations are scheduled by a single clock 

signal
• Which drives one nMOS and one pMOS transistor in each dynamic 

stage

( )21321 BBAAAF +=
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Dynamic CMOS logic gate implementing a complex 
Boolean function(2)

• Φ=0 (precharge phase)
– Mp on, Me off ⇒ the parasitic capacitance of the circuit is charged up to 

Vout=VDD
• The input voltages are also applied during this phase⇒ no influence on the output

• Φ=1 (evaluate phase)
– Mp off, Me on ⇒ the output voltage depend on the input voltage levels

• VOL or VDD
• The practical multi-stage applications, however, the dynamic CMOS gate 

presents a significant problem 
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Illustration of the cascading problem in 
dynamic CMOS logic(1)

• Assume
– During the precharge phase

• Both output voltages Vout1 and Vout2 are pulled up
– During evaluation phase

• The input variables of 1st stage assume to be such that
– Output Vout1 drop to logic “0”

• The external input of 2nd stage assume to be logic ‘1’
• As evaluation 

– Beginning
• Both Vout1 an d Vout2 are logic-high

– Then 
• Vout1  drops to its correct logic after a certain time delay
• Vout2 

– Starting with the high value of Vout1 at the beginning of the evaluation phase, the output voltage Vout2 at 
the end of the evaluation phase will be erroneously low
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Illustration of the cascading problem in dynamic 
CMOS logic(1)
• This example illustrates that 

– Dynamic CMOS logic gates driven by the 
same clock signal cannot be cascade 
directly

– This limitation undermine some advantages, 
such as
• Low power dissipation
• Large noise margins
• Low transistor count 
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High-performance dynamic CMOS circuits

• Base on the basic dynamic CMOS logic gate 
structure

• Design to take full advantage of the obvious 
benefits of dynamic operation

• To all unrestricted cascading of multiple 
stages

• The ultimate goal is to achieve…,using the 
least complicated clocking scheme possible
– Reliable
– High-speed
– Compact circuit
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