CMOS

Digital Integrated
Circuits
Analysis and Design

Chapter 8

Sequential MOS Logic Circuits

Introduction

- Combinational logic circuit
- Lack the capability of storing any previous events
- Non-regenerative circuit
- There is no feedback relationship between the output and the input
- Sequential circuits
- The output is determined by the current inputs as well as the previously applied input variables
- Regenerative circuit
- Bistable circuits
- Two stable states
- Most widely used and important
- All basic latch, flip-flop circuits, registers, and memory elements
- Monostable circuits
- Only one stable operating point
- Astable circuits
- No stable operating point
- Oscillate, without settling into a stable operating mode

(b)

Figure 8.1 (a) Sequential circuit consisting of a combinational logic block and a memory block in the feedback loop. (b) Classification of logic circuits based on their temporal behavior.

Behavior of bistable elements

- Two identical cross-coupled inverter circuits
- $v_{01}=v_{i 2}, v_{02}=v_{i 1}$
- The two voltage transfer characteristics, $v_{01}-v_{i 1}$, and $v_{o 2}-v_{i 2}$
- Intersecting at three points
- If the circuit is initially operating at one of these two stable point
- Preserve this state unless it is forced externally to change its operating point
- Gain is smaller than unity (at the two operating points)
» Need sufficiently large voltage perturbation
- The third operating point
- The voltage gains are larger than unity
- A small perturbation at the input of any of the inverters will be amplified
- Causing the operating to move to one of the stable operating point

Figure 8.2 Static behavior of the two-inverter basic bistable element: (a) Circuit
schematic. (b) Intersecting voltage transfer curves of the two inverters, showing the three possible operating points. (c) Qualitative view of the potential energy levels corresponding to the three operating points.

CMOS two-inverter bistable element

- At the unstable operating point
- All four the transistor are in saturation
- Resulting in maximum loop gain for the circuit
- Small voltage perturbation
- Output voltage diverse and eventually settle at V_{OH} and V_{OL}

Figure 8.3 (a) Circuit diagram of a CMOS bistable element. (b) One possibility for the expected time-domain behavior of the output voltages, if the circuit is initially set at its unstable operating point.

Small-signal input and output, propagation of a transient

Initially operating at $v_{o 1}=v_{o 2}=v_{t h}$, i.e. at the unstable operating point
Assume $C_{g} \gg C_{d}$ for each inverter
Small signal drain current, $i_{g 1}=i_{d 2}=g_{m} v_{g 2}, i_{g 2}=i_{d 1}=g_{m} v_{g 1}$ where $v_{g 1}=\frac{q_{1}}{C_{g}}, v_{g 2}=\frac{q_{2}}{C_{g}}, q_{1}$ and q_{2} are the gate charg
$i_{g 1}=C_{g} \frac{d v_{g 1}}{d t}, i_{g 2}=C_{g} \frac{d v_{g 2}}{d t} \Rightarrow g_{m} v_{g 2}=C_{g} \frac{d v_{g 1}}{d t}, g_{m} v_{g 1}=C_{g} \frac{d v_{g 2}}{d t} \Rightarrow \frac{g_{m}}{C_{g}} q_{2}=\frac{d q_{1}}{d t}, \frac{g_{m}}{C_{g}} q_{1}=\frac{d q_{2}}{d t}$
$\Rightarrow \frac{g_{m}}{C_{g}} q_{1}=\frac{C_{g}}{g_{m}} \frac{d^{2} q_{1}}{d t^{2}} \Rightarrow \frac{d^{2} q_{1}}{d t^{2}}=\left(\frac{g_{m}}{C_{g}}\right)^{2} q_{1}$
This equation can also be expressed in a more simplified form by using τ_{0}, the transit time constant
$\frac{d^{2} q_{1}}{d t^{2}}=\frac{1}{\tau_{0}^{2}} q_{1}$ with $\tau_{0}=\frac{C_{g}}{g_{m}}$
The time-domain solution for $q_{1}(t)=\frac{q_{1}(0)-\tau_{0} q_{1}^{\prime}(0)}{2} e^{-\frac{t}{\tau_{0}}}+\frac{q_{1}(0)-\tau_{0} q_{1}^{\prime}(0)}{2} e^{+\frac{t}{\tau_{0}}}$
where the initial condition is $q_{1}(0)=C_{g} \cdot v_{g 1}(0)$, note that $v_{g 1}=v_{o 2}, v_{g 2}=v_{01}$
$v_{o 2}(t)=\frac{1}{2}\left(v_{o 2}(0)-\tau_{0} v_{02}^{\prime}(0)\right) e^{-\frac{t}{\tau_{0}}}+\frac{1}{2}\left(v_{o 2}(0)+\tau_{0} v_{02}^{\prime}(0)\right) e^{+\frac{t}{\tau_{0}}}$
$v_{o 1}(t)=\frac{1}{2}\left(v_{o 1}(0)-\tau_{0} v_{01}^{\prime}(0)\right) e^{-\frac{t}{\tau_{0}}}+\frac{1}{2}\left(v_{o 1}(0)+\tau_{0} v_{01}^{\prime}(0)\right) e^{+\frac{t}{\tau_{0}}}$
$\Rightarrow v_{o 1}(t) \approx \frac{1}{2}\left(v_{o 1}(0)+\tau_{0} v_{01}^{\prime}(0)\right) e^{+\frac{t}{\tau_{0}}}, v_{o 2}(t) \approx \frac{1}{2}\left(v_{o 2}(0)+\tau_{0} v_{02}^{\prime}(0)\right) e^{+\frac{t}{\tau_{0}}}$
Note that the magnitude of both output voltages increases exponentially with time
Depending on the polarity of the initial small perturbations $d v_{o 1}(0)$ and $d v_{o 2}(0)$,
the output voltages of both inverters will diverge from their initial value of $V_{t h}$ to either $V_{O L}$ or $V_{O H}$

While the bistable circuit is settling from its unstable operating point into one of its stable operating points, we can envison a signal traveling the loop consisting of the two cascaded inverters several times.
The time-domain behavior of the output voltage $v_{o 1}$ during this period is $\frac{v_{o 1}(t)}{v_{o 1}(0)}=e^{+\frac{t}{\tau_{o}}}$
If during a time interval T, the signal travels the loop n times, then the equivalent to the same signal propagating along a cascaded inverter chain consisting of $2 n$ inverters.

Figure 8.4 Small-signal input and output currents of the inverters.

Figure $\mathbf{8 . 5}$ Phase-plane representation of the bistable circuit behavior.

Figure 8.6 Propagation of a transient signal in the two-inverter loop during settling.

The loop gain $A^{n}=e^{+\frac{T}{\tau_{0}}}$

SR latch circuit

- The bi-stable element
- Consisting two cross-coupled inverters has two stable operating states
- Preserving its state as long as the power supply is provided
- A simple memory function of holding its state
- However, no provision for allowing its state to be changed externally from one stable operating mode to another
- CMOS SR latch
- Having two triggering inputs, S and R
- Triggering the circuit from one operating point to the other
- SR flip-flop
- Two stable states can be switched back and forth
- Consisting
- Two CMOS NOR2 gates
- One input cross-couple to the output of other NOR gate
- Another input enables triggering

Figure 8.7 CMOS SR latch circuit based on NOR2 gates.

SR latch circuit

- The SR latch has two complementary outputs, Q and -Q
- $\mathrm{Q}=1 \Rightarrow$ in its "set" state
- $\mathrm{Q}=0 \Rightarrow$ in its "reset" state
- Gate level schematic
- Two NOR2 gates
- If both inputs ="0"
- Operating like the simple cross-coupled bistable element
- Holding either one of its two stable operating points (states) as determined by the previous inputs
- If $S=1$
- Forcing the output $\mathrm{Q}=1$
- If $R=1$
- Forcing the output $\mathrm{Q}=0$
- $S=1$ and $R=1$, not allowed

Table 8.1 Truth table of the NOR-based SR latch circuit

\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}_{n+1}	$\overline{\boldsymbol{Q}_{n+1}}$	Operation
0	0	Q_{n}	$\overline{Q_{n}}$	hold
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

Figure 8.8 Gate-level schematic and block diagram of the NOR-based
SR latch.

Operation modes of the transistors in the NOR-based CMOS SR latch circuit

- If $\mathrm{S}=\mathrm{V}_{\mathrm{OH}}, \mathrm{R}=\mathrm{V}_{\mathrm{OL}}$
- M1, M2 on \Rightarrow node $-\mathrm{Q}=\mathrm{V}_{\mathrm{OL}}=0$
- M3, M4 off \Rightarrow node $\mathrm{Q}=\mathrm{V}_{\text {OH }}$
- If $\mathrm{S}=\mathrm{V}_{\mathrm{OH}}, \mathrm{R}=\mathrm{V}_{\mathrm{OL}}$, the situation will reverse
- If $\mathrm{S}=\mathrm{V}_{\mathrm{OL}}, \mathrm{R}=\mathrm{V}_{\mathrm{OL}}$, there are two possibilities
- Depending on the previous state of the SR latch
- Either M2 or M3 on (while M1, M4 off)
- Generating a logic low level of $\mathrm{V}_{\mathrm{OL}}=0$ at one of the output nodes
- While the complementary output node is at V_{OH}

Table 8.2 Operation modes of the transistors in the NOR-based CMOS SR latch circuit

\boldsymbol{S}	\boldsymbol{R}	\mathbf{Q}_{n+1}	$\overline{\mathbf{Q}_{n+1}}$	Operation
$V_{O H}$	$V_{O L}$	$V_{O H}$	$V_{O L}$	M1 and M2 on, M3 and M4 off
$V_{O L}$	$V_{O H}$	$V_{O L}$	$V_{O H}$	M1 and M2 off, M3 and M4 on
$V_{O L}$	$V_{O L}$	$V_{O H}$	$V_{O L}$	M1 and M4 off, M2 on, or
$V_{O L}$	$V_{O L}$	$V_{O L}$	$V_{O H}$	M1 and M4 off, M3 on

Figure 8.7 CMOS SR latch circuit based on NOR2 gates.

Transient analysis of the SR latch circuit

$C_{Q}=C_{g b, 2}+C_{g b, 5}+C_{d b, 3}+C_{d b, 4}+C_{d b, 7}+C_{S B, 7}+C_{d b, 8}$
$C_{\bar{Q}}=C_{g b, 3}+C_{g b, 7}+C_{d b, 1}+C_{d b, 2}+C_{d b, 5}+C_{S B, 5}+C_{d b, 6}$
Assuming that the latch is initially reset and that a set operation is being performed by applying $\mathrm{S}=$ " 1 " and $\mathrm{R}=$ =" 0 ", the rise time associated with node Q can now be estimated as follows
$\tau_{\text {rise }, \mathrm{Q}}(\mathrm{SR}-$ latch $)=\tau_{\text {rise } \mathrm{Q}}(\mathrm{NOR} 2)+\tau_{\text {fall, }, \mathrm{Q}}($ NOR2 $)$
The calculation of the switching time $\tau_{\text {rise }, Q}$ requires two separate calculations for the rise and fall times of the NOR2 gates
First, M 1 turn on $\Rightarrow \overline{\mathrm{Q}}$ falling from high to low; followed M3 turn off $\Rightarrow \mathrm{Q}$ rising from low to high both M2 and M4 can be assumed to be off in this process (although M2 can be turned on as Q rises)

Figure 8.9 Circuit diagram of the CMOS SR latch showing the lumped load capacitances at both output nodes.

Depletion load nMOS SR latch circuit

- The operation principle is identical to that of the CMOS SR latch
- In terms of power dissipation and noise margins

Figure 8.10 Depletion-load nMOS SR latch circuit based on NOR2

CMOS SR latch circuit based on NAND2 gates

- $\mathrm{S}=1, \mathrm{R}=1 \Rightarrow$ holding state
- $\mathrm{S}=0, \mathrm{R}=1 \Rightarrow \mathrm{Q}=1,-\mathrm{Q}=0$ (set the latch)
- $\mathrm{S}=1, \mathrm{R}=0 \Rightarrow \mathrm{Q}=0,-\mathrm{Q}=1$ (reset the latch)
- The NAND-based SR latch responds to active low input signals
- The NOR-based SR latch, which responds to active high inputs
- $\mathrm{S}=0, \mathrm{R}=0 \Rightarrow \mathrm{Q}=0,-\mathrm{Q}=0$ (not allowed)
- Depletion-load NAND2 gates
- The same operation
- Poor static power dissipation and noise margins

Figure 8.13 Depletion-load nMOS
NAND-based SR latch circuit.

Figure 8.11 CMOS SR latch circuit based on NAND2 gates.

S	R	Q_{n+1}	$\overline{Q_{n+1}}$	Operation
0	0	1	1	not allowed
0	1	1	0	set
1	0	0	1	reset
1	1	Q_{n}	$\overline{Q_{n}}$	hold

Figure 8.12 Gate-level schematic and block diagram of the NAND-based SR latch.

Clocked SR latch

- Asynchronous sequential circuit
- Responding to the changes occurring in input signals at a circuit-delay-dependent time point during their operation
- Synchronous operation
- By adding a gating clock signal to the circuit
- The outputs will respond to the input levels only during the active period of a clock pulse
- A clocked NOR-based SR latch
- CK=0
- The input signal have no influence upon the circuit response
- Output hold its current state
- $\quad C K=1$
- S and R inputs are permitted to reach the $S R$ latch
- The circuit is strictly level-sensitive during active clock phases
- Any changes occurring in the S and R input voltage when the CK level is equal to " 1 "

Figure 8.14 Gate-level schematic of the clocked NOR-based SR latch.

Figure 8.15 Sample input and output waveforms illustrating the operation of the clocked NOR-based SR latch circuit.

AOI based implementation of the clocked NOR-based SR latch

- Very small transistor counts

Figure 8.16 AOI-based implementation of the clocked NOR-based
SR latch circuit.

Active low

- The changes in the input signal levels will be ignored when the clock is equal to logic " 1 "
- The input will influence the outputs only when the clock is active, i.e., $\mathrm{CK}=0$

Figure 8.17 Gate-level schematic of the clocked NAND-based SR latch circuit, with active low inputs.

The clocked NAND-based SR latch

- Both the input signals and the CK signal are active high
- $C K=1$
- $S=1, R=0 \Rightarrow Q$ will be set
- $S=0, R=1 \Rightarrow Q$ will be reset
- $\mathrm{CK}=0$
- The latch preserves its state
- Drawback
- The transistor count is higher than the active low version shown in Fig. 8.17

(a)

(b)

Figure 8.18 (a) Gate-level schematic of the clocked NAND-based SR latch circuit, with active

Clocked JK latch

- All simple and clocked SR latch circuits suffer from the common problem
- Having a not-allowed input combination
- Their state becomes indeterminate when both inputs S and R are activated at the same time
- JK latch (JK flip-flop)
- By adding two feedback lines from the outputs to the inputs (in SR latch)
- NAND-based JK latch
- Active high inputs

Figure 8.19 Gate-level schematic of the clocked NAND-based JK latch circuit.

All-NAND implementation of the clocked JK

latch circuit

- The J and K inputs in this circuit correspond to the set and reset inputs of the basic SR latch
- J=1, K=0 \Rightarrow set
- J=0, K=1 \Rightarrow reset
- $\mathrm{J}=0, \mathrm{~K}=0 \Rightarrow$ preserves its current state
- J=1, K=1 \Rightarrow the latch simply switches its state due to feedback
- The JK latch does not have a not-allowed input combination

Figure 8.20 All-NAND implementation of the clocked JK latch circuit.

Table 8.3								Detailed truth table of the JK latch circuit
\boldsymbol{J}	\boldsymbol{K}	$\boldsymbol{Q}_{\boldsymbol{n}}$	$\overline{\boldsymbol{Q}_{\boldsymbol{n}}}$	\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}_{n+1}	$\overline{\boldsymbol{Q}_{n+1}}$	Operation
0	0	0	1	1	1	0	1	hold
		1	0	1	1	1	0	
0	1	0	1	1	1	0	1	reset
		1	0	1	0	0	1	
1	0	0	1	0	1	1	0	set
		1	0	1	1	1	0	
1	1	0	1	0	1	1	0	toggle
		1	0	1	0	0	1	

NOR-based implementation of the clocked JK latch

- The AOI-based circuit structure resulted in a relatively low transistor count
- There is no not-allowed input combination for the JK latch
- If $\mathrm{J}=1, \mathrm{~K}=1$ during the active phase of the clock pulse
- The output of the circuit will oscillate (toggle) continuously until either the clock becomes inactive (goes to zero), or one of the input signal goes to zero
- To prevent this undesirable timing problem
- The clock pulse width must be made smaller than the input-to-output propagation delay of the JK latch circuit
- The clock signal must go low before the output level has an opportunity to switch again
- Assuming that the clock constrain above is satisfied
- The output of the JK latch will toggle (change its state) only once for each clock pulse, if both inputs are equal to logic "1"
- Toggle switch

Figure 8.21 (a) Gate-level schematic of the clocked NOR-based JK latch circuit. (b) CMOS AOI realization of the JK latch.

Figure 8.22 Operation of the JK latch as a toggle switch.

Master-slave flip-flop

- The master-slave flip-flop
- Most of the timing limitations encountered in the previously examined clocked latch circuits can be prevented by using two latch stages in a cascaded configuration
- The two cascaded stages are activated with opposite clock phases
- Operation
- Clock high
- The "master" is activated \Rightarrow the inputs J and K entered into the flip-flop \Rightarrow the first stage outputs are set according to the primarily inputs
- Clock goes to zero
- The "master" inactive, the "slave" active
- The output levels of the flip-flop circuit are determined during this second phase

Figure 8.23 Master-slave flip-flop consisting of NAND-based JK latches.

Master-slave flip-flop

- The circuit is never transparent
- A change occurring in the primarily inputs is never reflected directly to the outputs
- Because the master and the slave stages are decoupled from each other, the circuits allows for toggling when $\mathrm{J}=\mathrm{K}=1$
- But it eliminates the possibility of the uncontrolled oscillations since only one stage is active at any given time

Figure 8.24 Sample input and output waveforms of the master-slave flip-flop circuit.

CMOS D-latch and edge-triggered flip-flop

- Direct CMOS implementations of conventional circuits such as the clocked JK latch or the JK master-slave flipflop tend to require a large number of transistors
- The simple D-latch circuit
- Simpler, fewer transistors
- Operation:
- When the clock is active \Rightarrow the output $\mathrm{Q}=$ the input D
- When the clock goes to zero \Rightarrow the output will preserve its state
- The CK input acts as an enable signal which allows data to be accepted into the D-latch
- Application
- Temporary storage of data or as a delay element

CMOS implementation of the D-latch

- Operation
- Circuit diagram
- Two-inverter loop and two CMOS transmission gate (TG) switches
- CK high \Rightarrow the input signal is accepted (latched) into the circuit
- CK low \Rightarrow this information is preserved as the state of the inverter loop
- Timing diagram
- The valid D input must be stable for a short time before (setup time, $\mathrm{t}_{\text {setup) }}$) and after (hold time, $\mathrm{t}_{\text {hold }}$) the neğative clock transition, during which the input switch opens and

Figure 8.27 CMOS implementation of the D-latch (version 1).
 the loop switch closes

- Once the inverter loop is completed by closing the loop switch, the output will preserve its valid level

CMOS implementation of the D-latch (version 2)

- Circuit consisting
- Two tri-state inverters, driven by the clock signal and its inverse
- Operation
- CK high
- The first tri-state inverter accepts the input signal
- The second tri-state inverter is at its high-impedance state
- The output Q is following the input signal
- CK low
- The input buffer becomes inactive

Figure 8.29 CMOS implementation of the D-latch (version 2).

- The second tri-state inverter completes the two-inverter loop
- Preserving its state until the next clock pulse

CMOS negative edge-triggered master-slave D flip-flop

- Circuit
- Cascading two D-latch circuits
- The first stage (master) is driven by the clock signal
- Positive level-sensitive
- The second stage (slave) is driven by the inverted clock signal
- Negative level-sensitive
- Operation
- CK high
- Master \Rightarrow follows D input
- \quad Slave \Rightarrow holds the previous value
- CK: high \rightarrow low
- Master \Rightarrow cease to sample the input and stores the D value at the time of the clock transition
- \quad Slave \Rightarrow becomes transparent , $\mathrm{Q}_{\mathrm{s}}=\mathrm{Q}_{\mathrm{m}}$
- The input cannot affect the output because the master stage is disconnected from the D input
- CK: low \rightarrow high
- \quad Salve \Rightarrow locks in the master latch output
- Master \Rightarrow sampling the input against
- This circuit is a negative edge-triggered D flip-flop by virtue of the fact that it samples the input at the falling edge of the clock pulse

Figure 8.30 CMOS negative (falling) edge-triggered master-slave D flip-flop (DFF).

Simulated input and output waveforms of CMOS DFF

- The output of the master stage latches the applied input (D) when the clock signal is " 1 "
- The output of the slave stage becomes valid when the clock signal drops to " 0 "
- The DFF samples the input at every falling edge of the clock pulse

Figure 8.31 Simulated input and output waveforms of the CMOS DFF circuit in Fig. 8.30.

Set-up time violation

- The operation of the DFF circuit can be seriously affected if the master stage experiences a set-up time violation
- If the input D switches from "0" to " 1 " immediately before the clock transition occurs
- Master \Rightarrow fail to latch the correct value
- Slave \Rightarrow produces an erroneous output

Figure 8.32 Simulated waveforms of the CMOS DFF circuit, showing a set-up time violation for the master stage input at 10 ns . The output of the master stage fails to settle at the correct level.

Layout of DFF

Figure 8.33 Layout of the CMOS DFF shown in Fig. 8.30.

NAND3-based positive edge-triggered DFF

- Initially (S, R, CK, D) $=(1,0,0,0)$ and $\mathrm{Q}=0$
- Second phase (S, R, CK, D)=(1, 0, 1, 1) and Q=0
- Third phase (S, R, CK, D) $=(1,1,1,1)$
- The output of gate 2 switches to 0 , which in turn sets the output of the last stage SR latch to 1
- The output of DFF switches to 1 at the positive-going edge of the clock signal, CK

Figure 8.34 NAND3-based positive edge-triggered D flip-flop circuit.

Figure 8.35 Timing diagram of the positive edge-triggered D flip-flop.

Schmitt trigger circuit

- A very useful regenerative circuit
- The schmitt trigger
- Has an inverter-like voltage transfer characteristic
- With two different logic threshold voltages
- For increasing input signal
- For decreasing input signal
- Being utilized for the detection of low-to-high and high-to-low switching events in noisy environments

Schmitt trigger circuit- operation (1)

i) At $V_{\text {in }}=0 V$

M1 and M2 are turn on $\Rightarrow V_{x}=V_{y}=V_{D D}=5 V$
M4 and M5 off, M3 off, M6 on saturation region
$\Rightarrow V_{z}=V_{D D}-V_{T, 6}=3.5 \mathrm{~V}$
ii) At $V_{i n}=V_{T 0, n}=1.0 \mathrm{~V}$

M5 starts to turn on, M4 is still off $\Rightarrow V_{x}=5 V$
iii) At $V_{i n}=2.0 \mathrm{~V}$

Assume M4 is off, while both M5 and M6 saturation
$\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{5}\left(V_{i n}-V_{T 0,5}\right)^{2}=\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{6}\left(V_{D D}-V_{z}-V_{T 0,6}\right)^{2}$
$\Rightarrow V_{z}=2.976 \Rightarrow V_{G S, 4}=2-2.976<V_{T 0, n}=1$, so M4 still off
iv) At $V_{\text {in }}=3.5 \mathrm{~V}$
V_{z} continues to decrease. Assume M5 linear, M6 saturation
$\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{5}\left[2\left(V_{i n}-V_{T 0,5}\right) V_{z}-V_{z}^{2}\right]=\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{6}\left(V_{D D}-V_{z}-V_{T 0,6}\right)^{2}$
$\Rightarrow V z=2.2 V \Rightarrow V_{G S, 4}=3.5-2.2=1.3>V_{T 0, n}=1$
At this point, M4 is already on, above assumption no longer val id V_{x} is being pulled down towar d " 0 "
We conclude the upper logic threshold voltage $V_{t h}^{+} \cong 3.5 V$

CMOS Schmitt Trigger DC analysis
vdd 50 dc 5 V
vin 10 dc 1v
m5 $2100 \mathrm{mn} \quad \mathrm{l}=1 \mathrm{u} \mathrm{w}=1 \mathrm{u}$
$\mathrm{m} 43120 \mathrm{mn} \quad \mathrm{l}=1 \mathrm{u} \mathrm{w}=2.5 \mathrm{u}$
m6 5320 mn l=1u w=3u
$\mathrm{m} 14155 \mathrm{mp} \quad 1=1 \mathrm{u} w=1 \mathrm{u}$
$\mathrm{m} 23145 \mathrm{mp} \quad \mathrm{l}=1 \mathrm{u} \mathrm{w}=2.5 \mathrm{u}$
m3 $0345 \mathrm{mp} \mathrm{l}=1 \mathrm{u} \mathrm{w}=3 \mathrm{u}$
. model mn nmos vto $=1$ gamma $=0.4 \mathrm{kp}=2.5 \mathrm{e}-5$
. model mp pmos vto $=-1$ gamma $=0.4 \mathrm{kp}=1.0 \mathrm{e}-5$
. dc vin 050.1
. print de v(3)
.end

Schmitt trigger circuit- operation (?)

i) At $V_{\text {in }}=5.0 \mathrm{~V}$

M4 and M5 are turn on $\Rightarrow V_{x}=0 V$
M1 and M2 off, M3 on saturation region
$\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{3}\left(0-V_{y}-V_{T, 3}\right)^{2}=0 \Rightarrow V_{y}=1.5 V$
ii) At $V_{\text {in }}=4.0 \mathrm{~V}$

M1is at the edge of turning on, M2 off, M3 saturation
\Rightarrow the output vol tage is still unchanged
iii) At $V_{\text {in }}=3.0 \mathrm{~V}$

M1 is on and in saturation region, M3 is also saturation
$\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{1}\left(V_{i n}-V_{D D}-V_{T 0, p}\right)^{2}=\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{3}\left(0-V_{y}-V_{T, 3}\right)^{2}$
$\Rightarrow V_{\text {in }}=2.02 \Rightarrow V_{G S, 2}=3-2.02=0.98>V_{T 0, p}=-1$
$\Rightarrow \mathrm{M} 2$ is still off at this point
iv) At $V_{\text {in }}=1.5 \mathrm{~V}$

If M2 is still off, M1 linear, M3 saturation
$\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{1}\left[2\left(V_{i n}-V_{D D}-V_{T 0, p}\right)\left(V_{y}-V_{D D}\right)-\left(V_{y}-V_{D D}\right)^{2}\right]=\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right)_{3}\left(0-V_{y}-V_{T, 3}\right)^{2}$
$\Rightarrow V_{y}=2.79 V$
At this point, M2 is already turn on \Rightarrow the output vol tage is being pull up to $V_{D D}$ We conclude that the lower logic threshold voltage $\mathrm{V}_{\mathrm{th}}^{-} \cong 1.5 \mathrm{~V}$

Figure 8.36 Simulated output voltage waveforms of the CMOS Schmitt trigger circuit,

