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Introduction 
• The parasitic capacitance 

associated with MOSFET
– Cgd, Cgs, gate overlap with diffusion
– Cdb, Csb, voltage dependant junction 

capacitance
– Cg, the thin-oxide capacitance over 

the gate area
– Cint, the limped interconnect 

capacitance
– Load capacitance Cload= Cgd,n + Cgd,p

+ Cdb,n + Cdb,p + Cint + Cg
• Csb,n and Csb,p have no effect on the 

transient behavior of the circuit, 
since VSB=0

• The delay times calculated using 
Cload may slightly overestimate the 
actual inverter delay

– Charging, discharging 
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Delay-time definitions
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Calculation of delay time

• The simplest approach for calculating the 
propagation delay times τPHL and τPLH
– Estimating the average capacitance current during 

charge down and charge up
–

– Not very accurate estimate of the delay time   
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Calculation of delay time(1)
• The propagation delay times can be found more accurately by solving the state equation 

of the output node in the time domain
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Example 6.1
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Example 6.2
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Calculation of delay time (2)
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Calculation of delay time (3)
• Considering the input voltage waveform is not an ideal 

(step) pulse waveform, but has finite rise and fall times
– Using an empirical expression as 6.29, 6.30

• The former expression based on the gradual channel 
approximation
– Can still be used for sub-micron MOS transistors with proper 

parameter adjustments
– Yet , the current driving capability of sub-micron transistors is 

significantly reduced as a result of channel velocity saturation
• (W/L)-ratio
• In deep-sub-micron nMOS saturation current no longer∝(VGS-VT)2

– Isat=κWn(VGS-VT)
– τPHL≈(CloadV50%)/Isat=[Cload(VDD/2)]/ κWn(VGS-VT)
– The propagation delay has only a weak dependence od the power 

supply
– Better estimate can be obtain by using an accurate short-

channel MOSFET model
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Inverter design with delay constrains
• The load capacitance Cload consist of 

– Intrinsic components parasitic drain capacitances which depend on transistor 
dimensions

– Extrinsic component interconnect/wiring capacitance and fan-out capacitance
• If Cload mainly consists of extrinsic components, and if this overall load 

capacitance can be estimated accurately and independently of the transistor 
dimensions

– Given a required (target) delay value of τ*PHL
– The (W/L)-ratio can be found as
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Example 6.3
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Inverter design with delay constrains
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Inverter design with delay constrains
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Example 6.4
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Example 6.4
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CMOS ring oscillator circuit
• This circuit does not have a stable operating point
• The only DC operating point:

– the input and output voltages of all inverters are equal to the logic threshold Vth
(unstable)

• A closed-loop cascade connection of any odd number of inverter will display 
astable behavior

– will oscillate once any of the inverter input or output voltages deviate from the 
unstable operating point, Vth

– V1, VOL→VOH trigger V2 to fall, VOH→VOL, difference between the V50%-
crossing times of V1 and V2, τPHL2 trigger V3 to rise, VOL→VOH, difference 
between the V50%-crossing times of V2 and V3, τPHL3......

– T= τPHL1+ τPHL1+τPHL2+ τPHL2+τPHL3+ τPHL3 =6τP
– f=1/T=1/(2nτP), τP=1/2nf
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Estimation of interconnect parasitics
• The load 

– Classical approach 
capacitive and lumped
• Internal parasitic capacitance 

of the transistor
• Interconnect (line) 

capacitances
• Input capacitances of the fan-

out gates
• Now, the interconnect line 

itself
– Three dimensional structure in 

metal and/or polysilicon
• Non-negligible resistance
• The (length/width) ratio of the 

wire distributed making 
the interconnect a true 
transmission line

• An interconnect is rarely 
isolated from other influence
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Estimation of interconnect parasitics
• If the time of flight across the interconnection line 

is much shorter than the signal rise/fall times
– The wire can be modeled as a capacitive load, or 

as a lumped or distributed RC network
• If the interconnection lines are sufficient long and 

the rise times of the signal comparable to …
– The inductance becomes important
– Modeled as transmission lines
–

– The longest wire on a VLSI chip (2cm) fright 
time≅133ps, shorter than rise/fall time capacitive 
or RC model 

– 10 cm multi-chip module 1ns, the same order as 
rise/fall time considering RLCG

{ }

{ }

speedn propagatio  theis  and length, linect interconne  theis  Here,

modeling lumped                    5)(

modeling lumpedor 
line-nsmissioneither tra

5)(5.2

modeling lineontransmissi                5.2)(

vl
v
l

v
l

v
l

v
l

fallrise

fallrise

fallrise

⇒⎟
⎠
⎞

⎜
⎝
⎛×>

⎭
⎬
⎫

⎩
⎨
⎧

⇒⎟
⎠
⎞

⎜
⎝
⎛×<<⎟

⎠
⎞

⎜
⎝
⎛×

−⇒⎟
⎠
⎞

⎜
⎝
⎛×<

ττ

ττ

ττ



19

The transmission line effect
• IN CMOS VLSI chips

– Not serious concern
– The gate delay due to capacitive load component dominated the line delay

• The sub-micron design rules
– The intrinsic gate delay tend to decrease significantly
– The overall chip size and the worse-case line length on a chip tend to increase

• Mainly due to increasing chip complexity
• The widths of metal lines shrink while thickness increase

– The transmission line effects and signal coupling between neighboring lines become even more 
pronounced

• To optimize a system for speed, chip designer must have reliable and 
efficient means for

– Estimating the interconnect parasitics in a large chip
– Simulating the transient effect
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Interconnection delay

• The hierarchical structure of most VLSI design
– Chip
– Modules

• Inter-module connection longer

– Logic gates, transistors
• Intra-module connection shorter
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Interconnect capacitance estimation
• A complicated task
• Fringing-field factor FF=Ctotal/Cpp



22

Estimation of interconnection capacitance
• The formulas provide accurate approximation of the 

parasitic capacitance values to within 10% error, even 
for very small values of (w/h) and (t/h)
– The linear dash-dotted line parallel-plate cap.
– W/T decreases cap. Decreases

• Level off at approximately 1pF/cm, when the wire width is 
approximately equal to insulator thickness
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Capacitance coupling
• Considering the 

interconnection line is not 
completely isolated from 
the surrounding 
structures, but is coupled 
with other lines running in 
parallel
– The total parasitic 

capacitance increased by
• Fringing-field effects
• Capacitive coupling 

between the lines
– When the thickness of 

the wire is comparable 
to its width coupling 
capacitance↑

– Signal crosstalk
» Transitions in one 

line can cause 
noise in the other 
lines 



24

Capacitance of an interconnect line
• The capacitance of a line which is coupled with two other lines on 

both sides
– If both of the neighboring lines are biased at ground potential
– The total parasitic capacitance can be more than 20 times as large as the 

simple parallel-plate capacitance
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Capacitance between various layers



26

Interconnect resistance estimation
• The total resistance 

–

– The sheet resistivity
• Polysilicon: 20-40 Ω/square
• Silicided ploysilicon: 2-4 Ω/square
• Aluminum: 0.1 Ω/square
• Metal-poly, metal-diffusion contact: 20-30 Ω
• Via resistance: 0.3 Ω

• We can estimate the total parasistic resistance of a wire 
segment based on its geometry
– Short distance negligible
– Long distance the total lumped resistance connect in series 

with the total lumped capacitance
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Calculation of interconnect delay- RC delay models
• If the time of flight across the 

interconnect line is significant shorter 
than the signal rise/fall times

– Can be modeled as a lumped RC 
network

– Assuming that the capacitance is 
discharged initially, and assuming that 
the input signal is a rising step pulse 
at time t=0

•

• Unfortunately, this simple lumped RC 
network provides a very rough 
approximation

• The accuracy of the simple lumped RC 
model can be significant improved by 

– Dividing the total resistance into two 
equal parts

• More accuracy
– RC ladder network
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Calculation of interconnect delay- The Elmore delay
• Consider a general RC tree network

– There are no resistor loops in this circuit
– All of the capacitors in an RC tree are connected between a node and a 

ground
– There is one input node in the circuit
– There is a unique resistive path, from the input node to any other node 

in the circuit
• Path definitions

– Let Pi denote the unique path from the input node to node i, i=1,2,3..n
– Let Pij=Pi∩Pj denote the portion of the path between the input and the 

node i, which is common to the path between the input and node j
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Calculation of interconnect delay- The Elmore delay
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Example 5
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Example 5
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Switching power dissipation of CMOS inverters
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Power meter simulation
• Power meter

– Estimating the average power dissipation of an arbitrary device or circuit 
driven by a periodic input, with transient circuit simulation

– Consisting
• A linear-controlled current source
• A capacitor
• A resistor

–

– The right-hand side of (6.75) corresponds to the average power drawn 
from the power supply source over one period

– The value of the node voltage Vy at t=T gives the average power 
dissipation 
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Example 6
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Power-delay product
• For measuring the quality and the performance of a CMOS process 

and gate design
• The average energy required for a gate to switch its output voltage 

from low to high and from high to low
• PDP=CloadV2

DD   (6.76)
– Dissipated as heat during switching
– To keep Cload and VDD as low as possible

• PDP=2P*avgτp (6.77)
– P*avg is the average switching power dissipation at maximum operating 

frequency
– Τp is the average propagation delay
– The factor of 2, accounting two transitions of the output, from low to high 

and from high to low
– This result may misleading interpretation that the amount of energy 

required per switching event is a function of the operating frequency
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Super buffer design (1)
• Super buffer

– A chain of inverters designed to drive  a large capacitive load with minimal signal 
propagation delay time

• A major objective of super buffer design
– Given the load capacitance faced by a logic gate, design a scaled chain of N 

inverters such that the delay time between the logic gate and the load 
capacitance node is minimized

– The design task is to determine 
• The number of stages, N
• The optimal scale factor, α
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Super buffer design (2)
• For the super buffer

– Cg: the input capacitance of the first stage inverter
– Cd: the chain capacitance of the first stage inverter
– The inverters in the chain are scaled up by a factor of α per stage
– Cload= αN+1Cg
– All inverters have identical delay of τ0(Cd+ αCg)/(Cd+Cg)

• τ0: the per gate delay in the ring oscillator circuit with load capacitance (Cd+Cg)
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