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Why Worry About Power?
 Battery-powered devices

• GSM phone, UMTS phone, MP3 player, PDAs
» Complexity increases

» Energy budget remains the same

 Complex high-speed devices
• Thermal problems

• Expensive packaging
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Evolution in Power Density
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Microprocessor Power Dissipation
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Power and Energy

 Power is drawn from a voltage source attached to the VDD 
pin(s) of a chip.

 Instantaneous Power: 

 Energy:

 Average Power:
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Overview of Power Consumption

 Ptotal = Pdynamic+Pshort-circuit+Pleakage +Pstatic

 Dynamic (Switching) Power Consumption (Pdynamic)
• Charging and discharging capacitors

 Short Circuit Power Consumption (Pshort-circuit)
• Short circuit path between supply rails during switching

 Leakage Power Consumption (Pleakage)
• Leaking diodes and transistors

 Static Power Consumption (Pstatic)
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Dynamic Power (1/3)

 Dynamic power is required to charge and 
discharge load capacitances when transistors 
switch.

 One cycle involves a rising and falling output.
 On rising output, charge Q = CVDD is required
 On falling output, charge is dumped to GND

Vin Vout

CL

Vdd

fsw
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Dynamic Power (2/3)

 Energy Per Transition

• Not a function of frequency!

• 50% dissipated by Ron

• 50% stored/delivered in/by CL

 Dynamic Power
Pdynamic = CL  VDD² f

 Not a function of transistor sizes!
 Need to reduce CL, VDD, and f to reduce power.
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Dynamic Power (3/3)
 Pdynamic = Energy/per-transition  Transition rate

             = CLVDD2 f0→1

             = CL  VDD2 P0→1 f 

             = Ceff  VDD2 f 

 Ceff = effective capacitance = CL P0→1

 Power dissipation is data dependent
• Function of Switching Activity

 Activity Factor (P0→1)
• Clock signal: P0→1(clk) = 1

• Data signal:  P0→1(data) < 0.5



CMOS Digital Integrated Circuits1
0

Short Circuit Current (1/2)

 When transistors switch, both nMOS and pMOS 
networks may be momentarily ON at once

 Leads to a blip of “short circuit” current.
 ~ 15% of dynamic power

• ~85% to charge capacitance CL

 NMOS and PMOS on
• Both transistors in saturation

 Long rise / fall times
• Slow input transition

• Increase short circuit current

Make input signal transitions fast to save power!

Vin Vout

CL

Vdd
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Short Circuit Current (2/2)
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The power dissipation due to short circuit 
currents is minimized by matching the 
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Leakage

 Sub-threshold current
• Transistor conducts below Vt

• For sub-micron relevant
» VDD / Vt ratio smaller

» Can dominate power consumption!

» Especially in idle mode.

Charge nodes fully to VDD!

Discharge nodes completely to GND!

 Drain leakage current
• Reverse biased junction diodes

Vout

Vdd

Sub­
threshold 
current

Drain 
junction 
leakage
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Sub-threshold Leakage Component
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Source of Leakage Current

Keshavarzi,Roy,Hawkins(ITC1997)
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Static Power Consumption

 Pseudo-NMOS logic style

• PMOS as resistor

• PDN as static CMOS logic
 Static current

• When output low
 Power consumption

• Even without switching activity
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Power Dissipation for Various CMOS Circuits

Chip Intel 386 DEC Alpha 21064 Cell based ASIC

Minimum feature size 1.5μm 0.75μm 0.5μm

Number of gates 36,808 263,666 10,000

fCLK 16MHz 200MHz 110MHz

VDD 5V 3.3V 3V

Ptotal 1.41W 32w 0.8w

    Logic gates 32% 14% 9%

    Clock Distribution 9% 32% 30%

    Interconnect 28% 14% 15%

    I/O drivers 26% 37% 43%
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Design for Low Power (1/4)

 Good Ideas
• On all levels

» Software

» Algorithm

» Architecture

» Gate

» Transistor

» Process technology

 Bad Ideas
• Apply one method

• Do it as late as possible

Consider low power design from the beginning!
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Design for Low Power (2/4)

 System Level
• Power management

» Power-down mode

» Global clock gating

» Dynamic voltage scaling

• Hardware/software co-design
» Early (simplified) power estimation

» Partitioning of functionality

» Minimum instructions for execution not code size
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Design for Low Power (3/4)

 Algorithm
• Arithmetic

» Choice of number representation

» Pre-computation

• Concurrency
» Parallelism - Trade area for power

» To reduce frequency
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Design for Low Power (4/4)

 Architecture
• Pipelining

» Allows voltage scaling: Increased throughput because 
frequency could be increased => lower supply voltage instead

• Redundancy
» Minimize shared resources to lower signal activity (buses)

• Data encoding
» Energy efficient state encoding

» Example: Gray code, One hot encoding

• Clocking
» Gated clocks

» Self-timed circuits
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Voltage Scaling (1/3)
 Pdynamic = f  CVDD²

• Quadratic influence

 Delay
• Increased

 Power delay product
• Improved
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Voltage Scaling (2/3)

EDP (Energy Delay Product)
• Measure for energy efficiency

 Lower supply voltage
• Less energy

• Increased delay
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Voltage Scaling (3/3)

 Dual voltage supply
 Internal voltage

• Reduced internal voltage 1.2V
» For low power operation

 External voltage
• Compatible IO voltage 3.3V

» To interface other ICs
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Variable-Threshold CMOS (VTCMOS) Circuits
 An efficient way to reduce subthreshold leakage currents

• Require twin-well or triple-well CMOS technology to apply 
different substrate bias voltages.

• Separate power pins may be required if the substrate bias 
voltages level are not generated on-chip.
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Multiple-Threshold CMOS (MTCMOS) Circuits
 Active Mode

• High-VT transistors are turned on.
• Logic gates consisting of low-VT 

transistors can operate with low 
switching power dissipation and 
small propagation delay.

 Standby Mode
• High-VT transistors are turned off, 

and the conduction paths can be 
effectively cut off.

 The series-connected standby 
transistors increase the overall 
circuit area and add extra 
parasitic capacitance and delay.
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Pipelining Approach (1/3)
 Preference = fclock  CtotalVDD²

• Ctotal

» Capacitance switched in the input and output register array

» Capacitance switched to implement the logic function
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Pipelining Approach (2/3)
 Speed Improvement

• By inserting N pipeline registers, clock frequency 
(throughput) my be increased about N times

 Power Saving
• One may keep pipelined clock frequency constant by 

reducing supply voltage to save power
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Pipelining Approach (3/3)
Power Saving

p(pipeline_stage) = P,max(input-to-output)/N = TCLK

 The logic blocks between two successive register can operate N-
times slower while maintaining the same functional throughout. 

 VDD can be reduced to a new value VDD,new

Ppipeline = [Ctotal +(N-1) Creg] VDD,New²  fclock

 Example: VDD=5V, fCLK=20MHz, four stage pipeline. 
Vth=0.8V,Creg/Ctotal=0.1Each stage can four times slower than 
the original system. VDD,New=2V(See Fig11.10).

 The overall power reduction factor is 0.2. The power saving is 
about 80%. 
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Parallelism
 Preserve original throughput by lowering supply 

voltage to save power dissipation
Pparallel = NCtotal·VDD,New²·fCLK /N+ Creg ·VDD,New²· fCLK

            =(1+Creg/Ctotal) Ctotal·VDD,New²·fCLK

 What do you pay?
• Area is increased.
• Latency is increased.

 Can combine pipelining with 
parallelism to further improve 
the speed and power.
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Switching Activity Reduction (1/5)

Power Consumption is Data Dependent
 Static Circuit

• Example 1: 2 input static NOR gate

Assume P(A=1)=1/2, P(B=1)=1/2.

P(out=1)=1/4

P0→1=P(out=0)P(out=1)=3/41/4=3/16

Ceff=3/16  CL
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Switching Activity Reduction (2/5)

Power Consumption is Data Dependent
 Dynamic Circuit

Mp

Me

VDD

PDN



In1
In2
In3

Out



Power is Only Dissipated when Out=0!

CEFF = P(Out=0).CL



CMOS Digital Integrated Circuits3
2

Switching Activity Reduction (3/5)

Power Consumption is Data Dependent
 Dynamic Circuit

• Example 2: 2 input dynamic NOR gate

Assume P(A=1)=1/2, P(B=1)=1/2.

P(out=0)=3/4

Ceff=3/4  CL

Switching activity is always higher in dynamic circuits 
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Switching Activity Reduction (4/5)
 Glitch Reduction

 Dynamic hazards
• Caused by unbalanced delays

• Usually 8% - 25% of dynamic power

 Suspicious for glitches
• Deep logic depth

• Ripple of carry in adder

 Relief
• Equalize lengths of timing paths through design.

• Reduce logic depth: Pipelining
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Switching Activity Reduction (5/5)
 Pre-Computation Technique

 Saves power by not enabling 
registers R2 and R3 in 
half (50%) of cases
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Reduction of Switched Capacitance

 Resource Sharing
• Causes switching overhead

• Increases effective capacitance

 Global buses vs. Local interconnect
 Locality: Shorter wires
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Transistor Sizing

Use Minimal Transistor Where Possible
 Transistor width W

• Current driving capability
ID = K  (W/L)  ......

• Capacitance
C = COX  W  L

• Large W
» For dominating interconnect

 Minimum transistors
• Lowest capacitance
• Optimal for low power
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Design for Low Power (Cont.)

 Process Technology
• VDD reduction

• Threshold voltage
» High threshold voltage

» Double-threshold devices

• Low threshold for high speed

• High threshold for low power

• Silicon on insulator (SOI)
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Conclusion

 Power consumption
• Dynamic, Short circuit, Leakage, Static

 Design for low power
• Motivation for VLSI innovation

• On all levels! System level … process tech.

• Lowest possible
» Supply voltage VDD

» Effective capacitance Ceff

» Clock frequency fCLK
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