CMOS Digital Integrated Circuits

Lec 14

Low-Power CMOS Logic
Circuits

CMOS Digital Integrated Circuits




Why Worry About Power?

B Battery-powered devices
* GSM phone, UMTS phone, MP3 player, PDAs

» Complexity increases
» Energy budget remains the same

B Complex high-speed devices

* Thermal problems

* Expensive packaging
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Power Density [W/cm?]
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Microprocessor Power Dissipation
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Power and Energy

B Power is drawn from a voltage source attached to the Vp,
pin(s) of a chip.

B Instantaneous Power: P(t) =i, (t)V,,

T T
B Energy: E =J0 P(t)dt =J0 ipp (O)Vppdt

E 1J'T

B Average Power: Fug =7 =7 | loo(OVopdt

0
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Overview of Power Consumption

B P = Paynamict Pshore-circuitt Pleakage T Pstatic

B Dynamic (Switching) Power Consumption (Pgaynamic)
* Charging and discharging capacitors

B Short Circuit Power Consumption (Pipore-circuit)
* Short circuit path between supply rails during switching

B ].eakage Power Consumption (Pjegkage)

* Leaking diodes and transistors

B Static Power Consumption (Pj.)
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Dynamic Power (1/3)

B Dynamic power is required to charge and
discharge load capacitances when transistors
switch.

B One cycle involves a rising and falling output.
B On rising output, charge Q = CV)), is required
B On falling output, charge is dumped to GND

vdd
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Dynamic Power (2/3)

B Energy Per Transition
E=| i OV, dE=V,, [ i (tdt=C, V3,
* Not a function of frequency!
* 50% dissipated by Ron
* 50% stored/delivered in/by CL

B Dynamic Power
Piynamic = Cr X Vpp?X f
B Not a function of transistor sizes!
B Need to reduce C;, Vpp, and f to reduce power.
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Dynamic Power (3/3)
B P, ..mic = Energy/per-transition X ITransition rate
= CXVpp?Xfo-1
= CXVpp2X Py X f
= CoX Vpp2X f
B C,; = effective capacitance = C; x Py,

B Power dissipation is data dependent
* Function of Switching Activity

B Activity Factor (Py-,)
* Clock signal: P,.;(clk) =1
* Data signal: P,.;(data) <0.5
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Short Circuit Current (1/2)

B When transistors switch, both nMOS and pMOS
networks may be momentarily ON at once

B [.eads to a blip of “short circuit” current.
B ~ 15% of dynamic power

« ~B85% to charge capacitance C;, Vin

B NMOS and PMOS on

* Both transistors in saturation Ismax L
B [.ong rise / fall times

* Slow input transition

t

* Increase short circuit current U Yoy Yy Y 7

Make input signal transitions fast to save power!
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Short Circuit Current (2/2)
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The power dissipation due to short circuit
currents is minimized by matching the
rise/fall times of the input and output signals.
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Leakage

B Sub-threshold current

* Transistor conducts below Vt

vdd
* For sub-micron relevant
» VDD / Vt ratio smaller —D‘
» Can dominate power consumption!
. L. Vout
» Especially in idle mode. ,
Drain
Charge nodes fully to VDD! = yjunction
Discharge nodes completely to GND! ‘ SJb!eakage
. _| threshold
B Drain leakage current = current

* Reverse biased junction diodes
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Sub-threshold Leakage Component
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¢ Leakage control is critical for low-voltage operation
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Source of Leakage Current

Keshavarzi,Roy,Hawkins(ITC1997)

Weak Inversion Current,
Drain Induced Barrier Lowering
d Narrow Width Effect

Source Drain
- -
n+ n+

Reverse Bias Diode
& gated diode

Gate Induced
Drain Leakage

GIDL)

Bulk
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Static Power Consumption

B Pseudo-NMOS logic style
* PMOS as resistor f[\
* PDN as static CMOS logic —c| ‘

B Static current ~ j.‘_L_jq
* When output low
B Power consumption . J_I I_Ch

* Even without switching activity T
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Power Dissipation for Various CMOS Circuits

Minimum feature size | 1.5um 0.75pm 0.5pm
Number of gates 36,808 263,666 10,000
ok 16MHz 200MHz 110MHz
Voo 5V 3.3V 3V
| 1.41W 32w 0.8w
Logic gates 32% 14% 9%
Clock Distribution | 9% 32% 30%
Interconnect 28% 14% 15%
I/0 drivers 26% 37% 43%
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Design for Low Power (1/4)

B Good Ideas B Bad Ideas
* On all levels * Apply one method
» Software * Do it as late as possible

» Algorithm
» Architecture
» Gate

» Transistor

» Process technology

Consider low power design from the beginning!
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Design for Low Power (2/4)

B System Level

* Power management
» Power-down mode
» Global clock gating
» Dynamic voltage scaling

* Hardware/software co-design
» Early (simplified) power estimation

» Partitioning of functionality

» Minimum instructions for execution not code size
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Design for Low Power (3/4)

B Algorithm

* Arithmetic
» Choice of number representation

» Pre-computation

* Concurrency
» Parallelism - Trade area for power
» To reduce frequency
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Design for Low Power (4/4)

B Architecture
* Pipelining

» Allows voltage scaling: Increased throughput because
frequency could be increased => lower supply voltage instead

Redundancy

» Minimize shared resources to lower signal activity (buses)

Data encoding

» Energy efficient state encoding

» Example: Gray code, One hot encoding
Clocking

» Gated clocks
» Self-timed circuits
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Voltage Scaling (1/3)
mp dynamic - f X CXVDDZ

* Quadratic influence

B Delay

* Increased 140 ' — - ' “
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Figure 11.9. Normalized propagation delay and average switching power dissipation of a CMOS
inverter, as a function of the power supply voltage V.
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Voltage Scaling (2/3)
EDP (Energy Delay Product)

* Measure for energy efficiency

B [ower supply voltage

* Less energy 15
* Increased delay

107

.5 1 13 2 23
Voo (V)
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Voltage Scaling (3/3)

B Dual voltage supply

B Internal voltage
* Reduced internal voltage 1.2V

» For low power operation

B FExternal voltage
* Compatible IO voltage 3.3V

» To interface other ICs
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Variable-Threshold CMOS (VITCMOS) Circuits

B An efficient way to reduce subthreshold leakage currents

* Require twin-well or triple-well CMOS technology to apply
different substrate bias voltages.

* Separate power pins may be required if the substrate bias
voltages level are not generated on-chip.

i " {2\; in active mode
-0.2V inactive mode —_— BP T ) 4V instand-by mode
Yo =S | 0.6 V in stand-by mode
| —
=
Substrate
Vin Vout Bias Control
Cirguit

IE-

|

0.2 V in active mode

¥ = 0.6 V in stand-by mode e

Vv 0OV in active mode
Bn = 3. 2V in stand-by mode
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Multiple-Threshold CMOS (MTCMOS) Circuits

B Active Mode
* High-V transistors are turned on. 0

* Logic gates consisting of low-V
transistors can operate with low
switching power dissipation and
small propagation delay.

N Standby Mode CMOS Logi high-speed operation with

. . it 1 low power consumption
e High-V transistors are turned off, Wi low Vy

and the conduction paths can be
effectively cut off.

S __“: high-Vy  prevents subthreshold
B The series-connected standby FIL wos leakage nsandiy e
transistors increase the overall

circuit area and add extra
parasitic capacitance and delay.
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Pipelining Approach (1/3)
| p reference = [clock X C,total><‘/DD2
Ctotal

» Capacitance switched in the input and output register array
» Capacitance switched to implement the logic function

Register Register

Logic
Function

INPUT OUTPUT

F(INPUT)

fouc

CLK l_

INPUT input_1 X input_2 input_sx input_4 inpuLSX input_6 *

OUTPUT x output_1 Xoutput_zx output_3 output_4X output_5 x

Figure 11.15. Single-stage implementation of a logic function and its simplified timing diagram,
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Pipelining Approach (2/3)

B Speed Improvement
* By inserting N pipeline registers, clock frequency
(throughput) my be increased about N times
B Power Saving

* One may keep pipelined clock frequency constant by
reducing supply voltage to save power

Register Stage 1 Register Stage 2 Stage N Register

INFUT

OouUTPUT

max. stage delay = Ty
forx foux

cux 1 1L ] --- | | L
INPUT input__1 input_2 x -=. input_IN input_N+1 inpul_N+2k
OoOuUTPUT x - - - output__1 output_2 output_3 *

Figure 11.16. N-stage pipeline structure realizing the same logic function as in Fig. 11.15. The
maximum pipeline stage delay is equal to the clock period, and the latency is NN clock cycles.
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Pipelining Approach (3/3)
Power Saving
7,(pipeline_stage) = Tp . (input-to-output)/N = Tk

B The logic blocks between two successive register can operate N-
times slower while maintaining the same functional throughout.

B V), can be reduced to a new value Vyp ..,
Ppipeline - [Ctotal X+(N'1) Creg] XVDD,Newz Xfclock

2
Ppipeline . [Ctotal + (N _1)Creg ]VDD,NEW fCLK
- 2
P reference Ctotal VDD f CLK

C' 2
— |:1_|_ reg (N _ 1):| VDDZ,New
VDD

total

B Example: Vpp=5YV, farxk=20MHz, four stage pipeline.
Vi=0.8V,C,./C.;=0.1=Each stage can four times slower than
the original system. Vpp n..,=2V(See Fig11.10).

The overall power reduction factor is 0.2. The power saving is

raWaWaWwi

about 809%.
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Parallelism

B Preserve original throughput by lowering supply
voltage to save power dissipation

P parallel =N Ctotal. VDD,Newz.f CLK / N+ Creg .VDD,NeWZ. f CLK
=(1+Creg/ Ctotal) Ctotal .VDD,New2°f CLK
P

2 INPUT
parallel _ VDD2,New 1 + C
Pr efer ence VDD C CLK1 (fou/N)

Logic
Function

F (input_1)

Logic
Function
INPUT

F (input_2)

B What do you pay?

* Area is increased.

OUTPUT
CLK_2 (e /N)

* Latency is increased.

Logic
Function

B (Can combine pipelining with

F (input_N)

parallelism to further improve

CLK_N (e /N)

th e S p e e d an d p Owe r. Figure 11.17. N-block parallel structure realizing the same logic function as in Fig. 11.15. Notice that

the input registers are clocked at a lower frequency of (f., , / N).
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Switching Activity Reduction (1/5)

Power Consumption is Data Dependent

B Static Circuit
* Example 1: 2 input static NOR gate
Assume P(A=1)=1/2, P(B=1)=1/2.
P(out=1)=1/4

PO_)IZP(Out:n\D{nnf:1 \—R/Av1/A=R/1A

C=3/16x [ A | B | out
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table of 2 input NOR gate

CMOS Digital Integrated Circuits




Switching Activity Reduction (2/5)

Power Consumption is Data Dependent

B Dynamic Circuit

Vbp
|
(1) —o’ M, \
Out
Imp | PDN —
Inp —
]
o |
I

Power is Only Dissipated when Out=0!

CEFF — P(Ollt=0).CL
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Switching Activity Reduction (3/5)

Power Consumption is Data Dependent
B Dynamic Circuit
* Example 2: 2 input dynamic NOR gate
Assume P(A=1)=1/2, P(B=1)=1/2.
P(out=0)=3/4
C.=3/4 xC;

Switching activity is always higher in dynamic circuits
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Switching Activity Reduction (4/5)

, Glitch Reduction
B Dynamic hazards

* (Caused by unbalanced delays

* Usually 8% - 25% of dynamic power T e
B Suspicious for glitches ! —}_D N e
B —
* Deep logic depth . AP
* Ripple of carry in adder S I
. £ gitth—\/
B Relief

Figure 11.22. Signal glitching in multi-level static CMOS circuits.
* Equalize lengths of timing paths through design.

e Rednre Ingir denth: Pinelinino

23) > :3) °>—
:):) . :):)’—

(@) (b)

Figure 11.23. (a) Implementation of a four-input parity (XOR) function using a chain structure. (b)
Implementation of the same function using a tree structure which will reduce glitching transitions.
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Switching Activity Reduction (5/5)

Pre-Computation Technique
B Saves power by not enabling *—xe

i
registers R2 and R3 in an i ﬁ

B Comparator
0) -
half (50%) of cases ¥ REG -
REG
:[{:::: o 2 bits & MSB comparator
L A
2 T
CLK
A[N-2:0] :: REG
N-1 bits E
Y ? N-1 bi
-1 bit
CLK———» J gated CLK comparator
switched
B [N-2:0] [ REG } conditionalty
N-1 bits %
A
I !
gated CLK Result
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Reduction of Switched Capacitance

B Resource Sharing
* Causes switching overhead
* Increases effective capacitance

B (Global buses vs. LL.ocal interconnect
B [.ocality: Shorter wires

1 AY AY &Y oY
LRI, 4

TAY 8V 8Y &Y ¥ 97 9% va

i

cm,l
(@)
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Transistor Sizing

Use Minimal Transistor Where Possible

B Transistor width W
* Current driving capability |
I, =K x(W/L)X... -

* Capacitance HeD.8 L-0.8
C=Cox XW XL . —
* Large W =5 L=0.5
» For dominating interconnect . —f
B Minimum transistors =10 LB &

* Lowest capacitance
* Optimal for low power
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Design for Low Power (Cont.)

B Process Technology
* Vpp reduction

* Threshold voltage
» High threshold voltage
» Double-threshold devices
* Low threshold for high speed
* High threshold for low power

* Silicon on insulator (SOI)
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Conclusion

B Power consumption

* Dynamic, Short circuit, Leakage, Static

B Design for low power
* Motivation for VLSI innovation
* On all levels! System level ... process tech.

* Lowest possible
» Supply voltage Vop
» Effective capacitance C,q

» Clock frequency fci«
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