CMOS Digital Integrated Circuits

Lec 14

Low-Power CMOS Logic Circuits

Why Worry About Power?

Battery-powered devices

- GSM phone, UMTS phone, MP3 player, PDAs
 - » Complexity increases
 - » Energy budget remains the same
- Complex high-speed devices
 - Thermal problems
 - Expensive packaging

Evolution in Power Density

CMOS Digital Integrated Circuits

Microprocessor Power Dissipation

CMOS Digital Integrated Circuits

Power and Energy

- Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- **Instantaneous Power:** $P(t) = i_{DD}(t)V_{DD}$

Energy:
$$E = \int_0^T P(t)dt = \int_0^T i_{DD}(t)V_{DD}dt$$

• Average Power:
$$P_{avg} = \frac{E}{T} = \frac{1}{T} \int_0^T i_{DD}(t) V_{DD} dt$$

Overview of Power Consumption

- $P_{total} = P_{dynamic} + P_{short-circuit} + P_{leakage} + P_{static}$
- Dynamic (Switching) Power Consumption (*P*_{dynamic})
 - Charging and discharging capacitors
- Short Circuit Power Consumption (**P**_{short-circuit})
 - Short circuit path between supply rails during switching
- Leakage Power Consumption (P_{leakage})
 - Leaking diodes and transistors
- Static Power Consumption (*P*_{static})

Dynamic Power (1/3)

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- On rising output, charge $Q = CV_{DD}$ is required
- On falling output, charge is dumped to GND

Dynamic Power (2/3)

Energy Per Transition

$$E = \int_0^T i_{DD}(t) V_{DD} dt = V_{DD} \int_0^T i_{DD}(t) dt = C_L V_{DD}^2$$

- Not a function of frequency!
- 50% dissipated by Ron
- 50% stored/delivered in/by CL
- Dynamic Power

 $\boldsymbol{P}_{dynamic} = \boldsymbol{C}_L \times \boldsymbol{V}_{DD}^2 \times \boldsymbol{f}$

- Not a function of transistor sizes!
- Need to reduce C_L , V_{DD} , and f to reduce power.

Dynamic Power (3/3)

$\blacksquare P_{dynamic} = Energy/per-transition \times Transition rate$

- $= C_L \times V_{DD^2} \times f_{0 \to 1}$
- $= C_L \times V_{DD^2} \times P_{0 \to 1} \times f$
- $= C_{eff} \times V_{DD}^2 \times f$
- C_{eff} = effective capacitance = $C_L \times P_{0 \rightarrow 1}$
- Power dissipation is data dependent
 - Function of Switching Activity
- Activity Factor $(P_{0 \rightarrow 1})$
 - Clock signal: $P_{0 \rightarrow 1}(clk) = 1$
 - Data signal: $P_{0 \rightarrow 1}(data) < 0.5$

Short Circuit Current (1/2)

- When transistors switch, both nMOS and pMOS networks may be *momentarily ON at once*
- Leads to a blip of "short circuit" current.
- ~ 15% of dynamic power
 - ~85% to charge capacitance C_L
- NMOS and PMOS on
 - Both transistors in saturation
- Long rise / fall times
 - Slow input transition
 - Increase short circuit current

Short Circuit Current (2/2)

Large capacitive load

Small capacitive load

Because of finite slope of input signal, there is a period when both PMOS and NMOS device are "on" and create a path from supply to ground

The power dissipation due to short circuit currents is minimized by matching the rise/fall times of the input and output signals.

Leakage

Sub-threshold current

- Transistor conducts below Vt
- For sub-micron relevant
 - » VDD / Vt ratio smaller
 - » Can dominate power consumption!
 - » Especially in idle mode.

Charge nodes fully to VDD!

Discharge nodes completely to GND!

- Drain leakage current
 - Reverse biased junction diodes

Sub-threshold Leakage Component

• Leakage control is critical for low-voltage operation

Source of Leakage Current

CMOS Digital Integrated Circuits

Static Power Consumption

- Pseudo-NMOS logic style
 - PMOS as resistor
 - PDN as static CMOS logic
 - Static current
 - When output low
- Power consumption
 - Even without switching activity

Power Dissipation for Various CMOS Circuits

Chip	Intel 386	DEC Alpha 21064	Cell based ASIC
Minimum feature size	1.5µm	0.75µm	0.5µm
Number of gates	36,808	263,666	10,000
f _{CLK}	16MHz	200MHz	110MHz
V _{DD}	5V	3.3V	3V
P _{total}	1.41W	32w	0.8w
Logic gates	32%	14%	9%
Clock Distribution	9%	32%	30%
Interconnect	28%	14%	15%
I/O drivers	26%	37%	43%

Design for Low Power (1/4)

Good Ideas

- On all levels
 - » Software
 - » Algorithm
 - » Architecture
 - » Gate
 - » Transistor
 - » Process technology

Bad Ideas

- Apply one method
- Do it as late as possible

Consider low power design from the beginning!

Design for Low Power (2/4)

System Level

- Power management
 - » Power-down mode
 - » Global clock gating
 - » Dynamic voltage scaling
- Hardware/software co-design
 - » Early (simplified) power estimation
 - » Partitioning of functionality
 - » Minimum instructions for execution not code size

Design for Low Power (3/4)

Algorithm

- Arithmetic
 - » Choice of number representation
 - » Pre-computation
- Concurrency
 - » Parallelism Trade area for power
 - » To reduce frequency

Design for Low Power (4/4)

Architecture

- Pipelining
 - » Allows voltage scaling: Increased throughput because frequency could be increased => lower supply voltage instead
- Redundancy
 - » Minimize shared resources to lower signal activity (buses)
- Data encoding
 - » Energy efficient state encoding
 - » Example: Gray code, One hot encoding
- Clocking
 - » Gated clocks
 - » Self-timed circuits

Voltage Scaling (1/3)

- $\square P_{dynamic} = f \times C \times V_{DD}^2$
 - Quadratic influence
- Delay
 - Increased
- Power delay product
 - Improved

Figure 11.9. Normalized propagation delay and average switching power dissipation of a CMOS inverter, as a function of the power supply voltage V_{DD} .

Voltage Scaling (2/3)

EDP (Energy Delay Product)

- Measure for energy efficiency
- Lower supply voltage

Voltage Scaling (3/3)

- Dual voltage supply
- Internal voltage
 - Reduced internal voltage 1.2V
 - » For low power operation
- External voltage
 - Compatible IO voltage 3.3V
 - » To interface other ICs

Variable-Threshold CMOS (VTCMOS) Circuits

An efficient way to reduce *subthreshold leakage currents*

- Require twin-well or triple-well CMOS technology to apply different substrate bias voltages.
- Separate power pins may be required if the substrate bias voltages level are not generated on-chip.

CMOS Digital Integrated Circuits

Multiple-Threshold CMOS (MTCMOS) Circuits Active Mode

- High-V_T transistors are turned on.
- Logic gates consisting of low-V_T transistors can operate with low switching power dissipation and small propagation delay.

Standby Mode

 High-V_T transistors are turned off, and the conduction paths can be effectively cut off.

The series-connected standby transistors increase the overall circuit area and add extra parasitic capacitance and delay.

prevents subthreshold leakage in stand-by mode

high-speed operation with low power consumption

prevents subthreshold leakage in stand-by mode

Pipelining Approach (1/3)

$$P_{reference} = f_{clock} \times C_{total} \times V_{DD}^{2}$$

- C_{total}
 - » Capacitance switched in the input and output register array
 - » Capacitance switched to implement the logic function

Pipelining Approach (2/3)

Speed Improvement

• By inserting N pipeline registers, clock frequency (throughput) my be increased about N times

Power Saving

• One may keep pipelined clock frequency constant by reducing supply voltage to save power

Figure 11.16. N-stage pipeline structure realizing the same logic function as in Fig. 11.15. The maximum pipeline stage delay is equal to the clock period, and the latency is N clock cycles.

Pipelining Approach (3/3) *Power Saving*

 τ_p (pipeline_stage) = $\tau_{P,max}$ (input-to-output)/N = T_{CLK}

- The logic blocks between two successive register *can operate Ntimes slower* while maintaining the same functional throughout.
- **V**_{DD} can be reduced to a new value $V_{DD,new}$

 $P_{pipeline} = [C_{total} \times + (N-1) C_{reg}] \times V_{DD,New}^{2} \times f_{clock}$

$$\frac{P_{pipeline}}{P_{reference}} = \frac{\left[C_{total} + (N-1)C_{reg}\right]V_{DD,New}^{2}f_{CLK}}{C_{total}V_{DD}^{2}f_{CLK}}$$
$$= \left[1 + \frac{C_{reg}}{C_{total}}(N-1)\right]\frac{V_{DD,New}^{2}}{V_{DD}^{2}}$$

Example: V_{DD} =5V, f_{CLK} =20MHz, four stage pipeline. V_{th} =0.8V, C_{reg}/C_{total} =0.1 \Rightarrow Each stage can four times slower than the original system. $V_{DD,New}$ =2V(See Fig11.10).

The overall power reduction factor is 0.2. The power saving is about 80%.
CMOS Digital Integrated Circuits

Parallelism

Preserve original throughput by lowering supply voltage to save power dissipation

 $P_{parallel} = NC_{total} \cdot V_{DD,New}^{2} \cdot f_{CLK} / N + C_{reg} \cdot V_{DD,New}^{2} \cdot f_{CLK}$ $= (1 + C_{reg} / C_{total}) C_{total} \cdot V_{DD,New}^{2} \cdot f_{CLK}$

- What do you pay?
 - Area is increased.
 - Latency is increased.
- Can combine pipelining with parallelism to further improve the speed and power.

Switching Activity Reduction (1/5)
 Power Consumption is Data Dependent
 Static Circuit

 Example 1: 2 input static NOR gate Assume P(A=1)=1/2, P(B=1)=1/2.
 P(out=1)=1/4

 $P_{0 \rightarrow 1} = P(out = 0) P(out = 1) = 2/4 \times 1/4 = 2/16$

C_{eff}=3/16 ×

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of 2 input NOR gate

Switching Activity Reduction (2/5)
Power Consumption is Data Dependent
Dynamic Circuit

Power is Only Dissipated when Out=0!

 $C_{EFF} = P(Out=0).C_L$

Switching Activity Reduction (3/5)

Power Consumption is Data Dependent

Dynamic Circuit

 Example 2: 2 input dynamic NOR gate Assume P(A=1)=1/2, P(B=1)=1/2.
 P(out=0)=3/4
 C_{eff}=3/4 × C_L

Switching activity is always higher in dynamic circuits

Switching Activity Reduction (4/5) Glitch Reduction

- Dynamic hazards
 - Caused by unbalanced delays
 - Usually 8% 25% of dynamic power
- Suspicious for glitches
 - Deep logic depth
 - Ripple of carry in adder
- Relief

Figure 11.22. Signal glitching in multi-level static CMOS circuits.

• Equalize lengths of timing paths through design.

Figure 11.23. (a) Implementation of a four-input parity (XOR) function using a chain structure. (b) Implementation of the same function using a tree structure which will reduce glitching transitions.

CMOS Digital Integrated Circuits

Reduction of Switched Capacitance

Resource Sharing

- Causes switching overhead
- Increases effective capacitance
- Global buses vs. Local interconnect
- Locality: Shorter wires

Transistor Sizing

Use Minimal Transistor Where Possible

- Transistor width W
 - Current driving capability $I_D = K \times (W/L) \times$
 - Capacitance
 - $C = C_{OX} \times W \times L$
 - Large W
 - » For dominating interconnect
- Minimum transistors
 - Lowest capacitance
 - Optimal for low power

Design for Low Power (Cont.)

Process Technology

- **V**_{DD} reduction
- Threshold voltage
 - » High threshold voltage
 - » Double-threshold devices
 - Low threshold for high speed
 - High threshold for low power
- Silicon on insulator (SOI)

Conclusion

- Power consumption
 - Dynamic, Short circuit, Leakage, Static
- Design for low power
 - Motivation for VLSI innovation
 - On all levels! System level ... process tech.
 - Lowest possible
 - » Supply voltage **V**_{DD}
 - » Effective capacitance C_{eff}
 - » Clock frequency *f*_{*CLK*}

